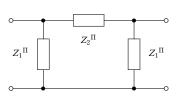
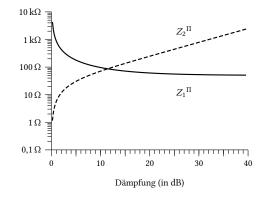
Angepasste Widerstands-Dämpfungsglieder

Beschreibung

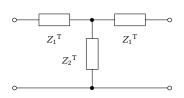
Diese Nomogramme dienen zur Dimensionierung von angepassten Widerstands-Dämpfungsgliedern in Π - und T-Form. Den angegebenen Widerstandswerten liegt eine charakteristische Impedanz von $Z_0=50\,\Omega$ zugrunde. Auf der mittleren Skala ist die Einfügungsdämpfung aufgetragen. Die zugehörigen Widerstandswerte liest man für die Π -Form auf der oberen Skala und für die T-Form auf der unteren Skala ab.

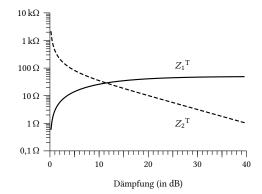

Die exakten Formeln zur Berechnung der Werte sind auf der rechten Seite angegeben*. Dabei ist $a=\ln |U_1/U_2|$ die Einfügungsdämpfung in Neper und Z_0 die Impedanz, zwischen der das Zweitor betrieben wird. Die Kurven zeigen die sich für $Z_0=50~\Omega$ ergebenden Widerstandwerte als Funktion von $20 \lg |U_1/U_2|$.

Ausgewählte Werte


	3 dB	6 dB	10 dB	15 dB	20 dB	30 dB
$Z_1^{\Pi} Z_2^{\Pi}$	292,4 Ω	150,5 Ω	96,2 Ω	71,6 Ω	61,1 Ω	53,3 Ω
	17,6 Ω	37,4 Ω	71,2 Ω	136,1 Ω	247,5 Ω	789,8 Ω
$Z_1^{T} Z_2^{T}$	8,5 Ω	16,6 Ω	26,0 Ω	34,9 Ω	40,9 Ω	46,9 Ω
	141,9 Ω	66,9 Ω	35,1 Ω	18,4 Ω	10,1 Ω	3,2 Ω

© Uwe Siart 1999-2025 http://www.siart.de/lehre/attenuator.pdf


Π-Form


$$Z_1^{\Pi} = \frac{Z_0}{\tanh\frac{a}{2}} \qquad Z_2^{\Pi} = Z_0 \cdot \sinh a$$

T-Form

$$Z_1^{\mathrm{T}} = Z_0 \cdot \tanh \frac{a}{2}$$
 $Z_2^{\mathrm{T}} = \frac{Z_0}{\sinh a}$

^{*}Schüßler, H. W.: Netzwerke, Signale und Systeme. Berlin, Springer, 1990